“Limiting similarity? The ecological dynamics of natural selection among resources and consumers caused by both apparent and resource competition”

Posted on

Mark A. McPeek (Apr 2019)

Read the Article

Abstract

Much of ecological theory presumes that natural selection should foster species coexistence by phenotypically differentiating competitors so that the stability of the community is increased, but whether this will actually occur is a question of the ecological dynamics of natural selection. I develop an evolutionary model of consumer-resource interactions based on MacArthur’s and Tilman’s classic works, including both resource and apparent competition, to explore what fosters or retards the differentiation of resources and their consumers. Analyses of this model predict that consumers will differentiate only on specific ranges of environmental gradients (e.g., greater productivity, weaker stressors, lower structural complexity); and where it occurs, the magnitude of differentiation also depends on gradient position. In contrast to “limiting similarity” expectations, greater intraspecific phenotypic variance results in less differentiation among the consumers because of how phenotypic variation alters the fitness landscapes driving natural selection. In addition, the final structure of the community that results from the coevolution of these interacting species may be highly contingent on the initial properties of the species as the community is being assembled. These results highlight that evolutionary conclusions about community structure cannot be based on ecological arguments of community stability or coexistence, but rather must be explicitly based on the ecological dynamics of natural selection.