Evolutionary potential of antipredator responses in a leaf beetle are driven by genetic parental effects
Read the Article (Just Accepted)
A membership society whose goal is to advance and to diffuse knowledge of organic evolution and other broad biological principles so as to enhance the conceptual unification of the biological sciences.
Posted on
Evolutionary potential of antipredator responses in a leaf beetle are driven by genetic parental effects
Read the Article (Just Accepted)
Despite the ubiquity of parental effects and their potential impact on evolutionary dynamics, their contribution to the evolution of predator-prey interactions remains poorly understood. Using quantitative genetics, here we demonstrate that parental effects substantially contribute to the evolutionary potential of larval antipredator responses in a leaf beetle (Leptinotarsa decemlineata). Previous research showed that larger L. decemlineata larvae elicit stronger antipredator responses, and mothers perceiving predators improved offspring responses by increasing intraclutch cannibalism –an extreme form of offspring provisioning. We now report substantial additive genetic variation underlying maternal ability to induce intraclutch cannibalism, indicating the potential of this adaptive maternal effect to evolve by natural selection. We also show that paternal size, a heritable trait, impacted larval responses to predation risk, but that larval responses themselves had little additive genetic variation. Together, these results demonstrate how larval responses to predation risk can evolve via two types of parental effects, both of which provide indirect sources of genetic variation for offspring traits.